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Abstract

GONG, SHUYU, M.S., May 2022, Computer Science

Listening longer to hear better: Dilated FCNs for Speech Enhancement (37 pp.)

Director of Report: Jundong Liu

Deep learning has recently become the dominant paradigm in solving the speech

enhancement (SE) problem. The ability to capture long contexts and extract multi-scale

patterns is crucial for designing effective SE networks. However, these capabilities often

conflict with maintaining a compact network to ensure good system generalization.

In this project, we review the background related to this problem and propose our

own solution. We first introduce some neural networks that perform well in solving SE

problems. We then explore dilation operations and apply them to fully convolutional

networks (FCNs) to further address this problem. Dilation equips the network with a

greatly expanded receptive field without increasing the number of parameters. Different

strategies for fusing multi-scale dilation and fitting dilation modules are explored in this

work.

We conduct experiments based on the noisy VCTK, AzBio sentences, and RASC863

Chinese speech corpus datasets. Our proposed dilated model significantly improves the

baseline FCN model and outperforms state-of-the-art SE solutions.
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1 Introduction

Enhancement of audio signals in noisy environments plays an important role in

many speech-related applications such as speech recognition, hearing aids, and cochlear

implants. One recent scenario is voice capture and transmitting over remote working

video conferences. During the pandemic, remote working or working from home has

been adopted by many companies. Effective collaborations require the videoconference

platforms to be able to reduce background noise while capturing human speech clearly.

Another popular usage is speech recognition in automobiles. Automobile companies have

adopted voice instruction as an advanced solution to control car functions such as air

conditioning and phone calls. Cars need to be able to reduce the highway noise in the

background for these functions to work well. Other speech enhancement applications

include airplane communications, wearable device interactions, among others.

1.1 Area Overview

Speech enhancement (SE) aims to enhance a speech signal (1-D array) by keeping

only the human speech signal and eliminating the additive disturbance components. The

basic process of SE is illustrated in Fig. 1.1. As the characteristic of human speech varies

from each individual, a more sophisticated algorithm needs to be developed to ensure the

high quality of SE work across wide use scenarios.

Figure 1.1: The illustration of speech enhancement pricipal.
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Traditional Methods Traditional SE techniques commonly operate on the spectral

domain and rely on certain high-level features to identify target audio patterns for noise

reduction. Spectral subtraction, spectral amplitude fitting, Wiener filtering, and non-

negative matrix factorization are among the operations that have been extensively studied.

The combination of time-to-frequency transformation and hand-crafted features (e.g.,

Mel-frequency cepstral coefficients (MFCCs)), however, often results in limited system

generalization and poor performance in handling diverse noise conditions.

Deep Learning In recent years, deep neural network-based models (DNNs) have

emerged as a new and more powerful paradigm for many artificial intelligence (AI)

related applications, including speech enhancement. Unlike traditional machine learning

approaches, where certain hand-crafted features (such as fundamental frequency, formants,

MFCC, etc.) need to be defined and extracted, DNN models carry out feature extraction in

an automatic, data-driven fashion, greatly simplifying the system design. DNN models also

facilitate a common platform for the solutions across different application areas, including

computer vision and speech signal processing, to be effectively shared. Up to date,

the DNN models that have been explored for speech enhancement include autoencoder

(AE) [THHJ11], restricted Boltzmann machine (RBM) [WW12a, WW12b, XDDL14],

multilayer perceptron (MLP) [WNW14], convolutional neural networks (CNN) [HCG+15],

recurrent neural networks (RNN) [TCW19], generative adversarial network (GAN)

[PBS17], and fully convolutional networks (FCN) [FTLK17, FWT+18a], among others.

Many of the existing SE networks operate on certain time-frequency (T-F) representation

of audio signals, generated through short-time Fourier transform (STFT) on fixed-length

frames. T-F representations bring great convenience to directly target on the frequency

components of the audio signals. The transformations from the waveform inputs to T-F

representations and back to the waveform outputs, however, impose a structural constraint
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to the networks, which complicates the system design and makes it difficult to predict the

network performance.

FCN approach and Issues FCNs on waveform provide a handy and powerful

alternative. FCN was firstly developed as an image segmentation solution [L+15] and

has since been successfully adopted for image modality conversion, super-resolution and

speech signal denoising [FTLK17, FWT+18a]. The fundamental goal of FCNs is to find

mappings, with certain desired property, between paired signal sources; therefore they are

well-suited to extracting clean waveforms out of noisy inputs [FTLK17, FWT+18a]. The

success of FCNs, in great part, is due to their capability of processing input data from

multiple spatial or temporal scales. Further improvements over the existing FCNs can be

pushed forward by ensuring the models to capture longer contextual information and/or

to enhance multi-scale processing. The former (longer context) can be easily achieved

through the utilization of larger filters, and making the network deeper provides a solution

for the latter. However, a simple combination of these two strategies will lead to a

significantly increased number of parameters, which would potentially result in limited

system generalization and poor performance in handling diverse noise conditions.

1.2 Contributions and Report Overview

In this project, we address this challenge by exploring dilated convolution operation

and applying it to FCNs. Dilated convolution was originally developed for image

segmentation, and its effectiveness to the task has been demonstrated in a number of works

[YK16, CPK+18]. We propose to adopt this operation to improve SE FCNs, by allowing

the networks to capture longer contexts, a.k.a., “listen longer”, as well as to extract more

diverse, multi-scale audio features. These features are then combined through a pyramid

pooling strategy. We also explore different network locations to embed the new operations.

All the improvements are made without incorporating additional layers or parameters.
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Using Noisy VCTK [VBWTY16, VB+17] and AzBio sentences [SDL+12] datasets, we are

able to demonstrate our proposed dilated FCNs outperform the state-of-the-art solutions.

The remainder of this report is organized as follows: we first review certain neural

network backgrounds in Chapter 2, which is needed to understand our proposed models. In

Chapter 3, the proposed dilated FCN model will be explained in detail. Experiments and

results are summarized in Chapter 4, followed by conclusions and a discussion of future

work in Chapter 5.
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2 Background and Related work

In this chapter, we will discuss the background of convolutional neural networks to

understand our proposed solution. We will introduce convolutional neural networks, fully

convolutional networks, major solutions for Time domain SE, and the basic idea of dilated

neural networks.

2.1 Convolutional Neural Networks and Fully Convolutional Networks

Convolutional Neural Networks (CNNs) are a particular group of deep neural

networks that are built with blocks of convolution, deconvolution, activation and pooling

operations. They have been widely used in various recognition tasks.

Convolution and deconvolution operations are the core of CNNs. Different from what

it is defined in mathematics, the convolution operation in CNNs performs a sliding dot

product or sliding inner product of two given sequences. One of the series is data, which is

usually called feature maps in deep learning, and the other series are parameters, which are

commonly called kernels. This operation is illustrated in Fig. 2.1.

Figure 2.1: An illustration of a convolution operation.
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The pooling operation in CNNs is another sliding window operation that computes

local statistics within the window, e.g., the minimum or maximum value. This operation

reduces the size of its input feature map by a defined fraction, e.g., halving for 1D data and

halving for 2D data.

Activation functions in a neural network are on-off gates that control the output of the

network. The most widely used activation functions include sigmoid, ReLU and SoftMax.

Neural networks can compute non-trivial problems using only a small number of nodes by

applying a nonlinear activation function such as a logistic activation function.

In the 2012 ImageNet [DDS+09] multi-class image classification competition,

AlexNet [KSH12] won the competition using CNN, revolutionizing the field of image

recognition. The architecture of AlexNet is shown in Fig. 2.2

Figure 2.2: An illustration of the architecture of AlexNet. [KSH12]

Fully Convolutional Networks (FCNs) The FCN [L+15] model proposed by Long et

al. replaces the fully connected layers at the end of CNN with convolutional layers. Instead

of using classification networks, they used convolutional networks to generate rough pixel-

level probability maps for image segmentation. However, the upsampling of regular layers

is too coarse and image details are lost. They combine the outputs of different convolutional

layers and add a skip network architecture to solve this coarse upsampling problem. The
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FCN model is the first network that can be considered as a purely CNN-based end-to-end

model for pixel-wise segmentation.

U-Net U-Net [RFB15] further refines this FCN concept by introducing skip

connections and decoding paths. The entire U-Net forms a U-shaped symmetrical shape.

The encoding path on the left side of the network contains only convolutional and pooling

layers, while the decoding path of the network is mirrored on the right side of the network

and contains only deconvolution and upsampling layers. Each corresponding encoding

and decoding layer is connected with a skip connection that carries information from

the original feature map. The U-Net architecture has excellent performance on multiple

segmentation applications.

2.2 Time domain SE solutions

There are two main branches of time-domain SE solutions: the waveform FCN model

and the TasNet-like [LM18, LM19] structure. The Waveform FCN model [FWT+18b,

SED18, GIK19, PW19b] directly processes the speech signal in the time domain, thus

eliminating the problem of invalid STFT. A widely used waveform FCN model is Wave-

U-Net [MW18], which is derived from the speech separation network [SED18]. The

original Wave-U-Net adapts SE by treating noise in speech as a distinct sound source.

Further improvements are achieved by introducing a local self-attention mechanism in

the skip connections of the FCN network [GIK19], which makes the network features

pay more attention to speech activity regions. Temporal Convolutional Neural Network

(TCNN) [PW19b] is also the FCN model used in SE. By including an additional temporal

convolution module, TCNN achieves better performance with fewer parameters and can

easily adapt to different frame sizes with simple modifications. Another variant of the

time-domain SE solution is TasNet [LM18]. TasNet replaces STFT with a 1D convolutional
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layer. It avoids the disadvantages of time-frequency masking, especially the discontinuity

of phase information. The original TasNet structure is illustrated in Fig. 2.3.

Figure 2.3: Time-domain Audio Separation Network (TasNet) models the signal in the
time-domain using encoder-decoder framework, and perform the source separation on
nonnegative encoder outputs. Separation is achieved by estimating source masks that
are applied to mixture weights to reconstruct the sources. The source weights are then
synthesized by the decoder. [LM18]

To further improve the output quality of SE models, comprehensibility-related

components are introduced into the neural network. These components include multi-

task setups and supervised feature learning. One approach to multi-task setup could be

to use a comprehensibility measure as the loss function. In [PW19a] they apply STFT to

the output of a waveform FCN SE model to compute the frequency domain loss. Some

other works directly improve objective intelligibility metrics, such as STOI [FWT+18b].

However, these metrics are not fully consistent with real-world performance, as the entire

metric is only an approximation of real human comprehensibility. To address this problem,

these objective evaluation metrics themselves were replaced by a more complex network, as

described in [PBS17, DLP18, SSP18, PW18]. The discriminator in SEGAN [PBS17] acts
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as a binary judge of speech quality. In order for GAN to directly optimize the evaluation

metrics of SE, MetricGAN [FLTL19] generates fake labels based on the metric scores.

2.3 Dilated CNN

CNN and its variants have shown good results in the field of computer vision. How-

ever, challenges remain for certain types of tasks, such as semantic image segmentation.

The DeepLab system [CPK+18] proposed a network using atrous spatial pyramid pooling

(ASPP) technology that can address some of the problems caused by traditional CNNs and

has been shown to segment objects robustly at multiple scales. The model illustration of

DeepLab system has been shown in Fig. 2.4

Figure 2.4: DeepLab Model Illustration. A Deep Convolutional Neural Network such
as VGG-16 or ResNet-101 is employed in a fully convolutional fashion, using atrous
convolution to reduce the degree of signal downsampling (from 32x down 8x). A bilinear
interpolation stage enlarges the feature maps to the original image resolution. A fully
connected CRF is then applied to refine the segmentation result and better capture the
object boundaries. [CPK+18]

There are three main challenges in the application of CNNs to semantic image

segmentation. The first is that when used in an FCN fashion, CNNs repeatedly combine

rbunescu
Cross-Out
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max-pooling and downsampling layers, resulting in reduced spatial resolution. Reducing

the number of max-pooling layers by inserting holes between non-zero filter taps can

improve network efficiency and improve spatial resolution. The second challenge is that

objects can exist at different scale levels. CNNs can only address this challenge by

computing features for all scaled versions of the input image. However, this challenge

can be addressed more efficiently by using multiple parallel atrous convolutional layers

with different sampling rates.
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3 Proposed Solution

Our goal is to develop an FCN addition to advance the state-of-the-art of speech

enhancement. The design is based the consideration of allowing the networks to listen

longer without an increase of the number of parameters. Our efforts are focused on

the explorations of 1) dilation convolutions to enlarge the receptive fields of neurons; 2)

atrous spatial pyramid pooling (ASPP) module to fuse the multi-scale feature maps; and 3)

different network locations in the baseline FCN to embed the ASPP modules.

3.1 Baseline model

Our baseline FCN model is adopted and modified from U-Net [RFB15], which

was originally designed for segmentation of cell images. U-Net has an encoder-decoder

architecture: in the encoding path, input images are processed through a number of

convolution + pooling layers to generate high-level latent features, which are then

progressively upsampled along the decoding path to reconstruct the target pixel labels.

Figure 3.1: Network structure of our Speech-U-Net. Picture is best viewed in color.

To fit our data and task, we modified the original U-Net as follows. First, as the

inputs and outputs of our model are one-dimensional waveforms, we replace all the two-

dimensional convolution operations in U-Net with one-dimensional convolutions. We keep

the original U-Net structure of two convolution layers followed by one pooling/upsampling

layer. The network is made deeper to enhance its capability to capture the features in more

rbunescu
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scales. The encoding path of our modified U-Net now has 6 convolution-pooling blocks of

totally 18 layers. We also use padding in convolution/deconvolution layers to maintain the

spatial dimension so that the skip connections can directly concatenate encoding layers with

the corresponding decoding layers. The L1 distance between network predictions (noise-

reduced speech) and the ground-truth (clean speech) is used as the objective function. We

term our baseline model Speech-U-Net, whose structure is shown in Fig. 3.1.

3.2 Dilated FCN for SE

Noisy speech signals tend to contain components with diverse frequency profiles.

To capture them through convolutions, filters of varying sizes would be required. Small

filters work well in catching high-frequency noise, but not so effectively for low-

frequency sounds. Large filters perform in an opposite way, keen to extract low-frequency

components but not high-frequency noise.

The receptive field (RF) at each layer decides the length of the audio signal a neuron

can hear. In convolution-based neural networks, including FCNs, the RFs are increased

along layers through both pooling and convolutions. Let Rk be the RF of neurons on layer

lk, and it can be computed as:

Rk = Rk−1 + (( fk − 1) ×
k−1∏
i=1

si) (3.1)

where fi and si are the sizes and strides of the filters on layer li, respectively. It should

be noted that a max pooling of n × 1, from the RF perspective, has the same effect of

convolutions of stride equal to n, and the standard convolutions (stride equal to 1) increase

the RFs in a linear fashion.

The neurons at the final layers of a network may have RFs that have been enlarged

multiple times (e.g., 25 = 32 after 5 max pooling operations). However, due to the high

sampling rates of audio signals, the feature maps in speech-enhancement FCNs tend to

catch speech segments with short durations. In our baseline model, which has 5 pooling
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layers and filters of size 30 at each convolution layer, each neuron at the last layer of the

encoding path covers 3686 sample points from the input, which is a 0.23 second sound

clip sampled at the rate of 16, 000 per second (only 0.077 second for the rate of 48, 000

per second), quite insufficient to grasp all types of audio patterns. To gain long enough

contextual information, one can simply add more pooling layers to makes the network

deeper, but that would inevitably lead to a more complicated system with an increased

number of parameters, as well as longer training and inference times.

Dilated Convolution Dilated convolutions, supporting exponentially expanding RFs

without the loss of resolution or coverage, can provide a remedy. Also, such expansion

can be achieved without the need to increase the number of parameters. The basic idea of

dilation is to space out the elements to be summed in convolution by a dilation factor, as

illustrated in Fig. 3.2. The convolutions in the bottom layer are regular 3 × 1 convolutions.

The middle layer has a dilation factor of 2, so the effective RF at each neuron covers 7 audio

samples. The top layer convolutions are dilated by 4, producing a 15 × 1 RF/coverage. In

general, the receptive filed Rk of a neuron on a dilated convolution layer lk is enlarged to:

Rk = Rk−1 + (( fk − 1) × dk ×

k−1∏
i=1

si) (3.2)

where di is the dilation factor of layer li. Comparing with the standard version, dilated

convolutions increase RFs without introducing more parameters. In addition, dilated

convolutions produce exponentially expanding RFs with depth, which is in contrast to

linear expansion produced by standard convolutions.

Fusion of multiscale dilations through ASPP Dilated convolutions allow us to listen

longer. To extract audio patterns with great varieties, however, multiple dilation factors

should be involved. Fig. 3.3 shows an example of applying dilation convolutions with 4

different factors. How to integrate the extracted features is a practical issue. In this work,

we adopt a strategy similar to the Atrous Spatial Pyramid Pooling (ASPP) scheme proposed
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Figure 3.2: Illustration of dilated convolutions, where the dilation factors are 1, 2 and 4,
respectively. Refer to text for details.

in DeepLab [CPK+18]. More specifically, we conduct dilation convolutions of 4 different

factors in parallel and concatenate the resulted feature maps into outputs. These 4 filters are

called a dilation group. Within each group, the filters have the same number of parameters

(3 in the example of Fig. 3.3), but cover different signal ranges because of the varying filter

lengths. For an input feature map of dimension L × C, where L is the size of the map and

C is the number of channels, we set the number of the dilation groups to C/4, to ensure

the output feature maps to maintain the dimension of L × C. Comparing with directly

utilizing C filters in the standard fashion, our dilated setup does not increase the number of

parameters, but enables the network to capture longer signals with varying lengths.

Figure 3.3: Illustration of fusion of multiscale dilation through ASPP. Refer to text for more
details.
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It should be noted that dilation has been utilized in a very recent work by Tan et al.

[TCW19] in a CNN+RNN model. To the best of our knowledge, our work is the first

attempt to explore dilated convolution to improve FCN models for speech enhancement.

Locations to add the dilation module To exert the power of dilations + ASPP, the

next step is to integrate the proposed dilation module into our baseline FCN model. To

set up a proper ASPP installation, we run into two practical issues. The first question is

regarding how to set the dilation factors. Our answer is based on the fact that the audio

patterns to be captured in this work are mainly human phonetic symbols, whose lengths

and frequencies tend to concentrate around certain ranges. It is necessary to have dilations

of different ratios, but the coverages do not have to be dramatically diverging in scale. With

this observation, we choose a relatively slow growing sequence, 1, 2, 3 and 4, as the dilation

factors of our ASPP convolutions

The second question is where to install the ASPP replacement. While ASPP can

be installed anywhere in the network, we hope our dilated convolutions filters, even with

limited number of parameters, can cover relatively long signal spans. In this regard, the end

of the encoding path would be an ideal place to add ASPP, as the neurons on this layer have

the largest RFs in the entire network. The further enlarged RFs by ASPP would provide a

best realization of our goal of “listening longer”. This setup is illustrate in Fig. 3.4.(a).

An alternative place to explore the ASPP replacement could be around the end of the

decoding path, which consists of two convolution layers, as shown in Fig. 3.4(b). Replacing

the first of the two layers with an ASPP would potentially allow the network to decompose

the features into different scales, before they will be finally merged to face the ground-truth.

Adding ASPP here would provide a (last) chance for the network to correct the integration

from previous layers. With the analysis of these two choices, very naturally, another setup

worth exploring would be the combination of the both. In our experiments, all three ASPP

replacement schemes, as illustrated in Fig. 3.4, are examined.

rbunescu
Highlight
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Figure 3.4: Three ASPP replacement schemes: a) adding ASPP in the middle layer of the
network; b) adding ASPP around the end of the decoding path; c) combination of a) and
b).
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4 Experiments and Results

4.1 Data sets

To evaluate the effectiveness of the proposed dilation + ASPP for speech enhancement,

we conduct experiments on three groups of datasets. The first experiment is based on

the Noisy VCTK dataset by Valentini et al. [VBWTY16, VB+17], which consists of

two training sets (28 and 56 speakers respectively) and a test set. We choose the 28-

speaker set, in which 14 males and 14 females were recorded with around 400 sentences

for each person. Noise of 10 different types, either synthetic or real, have been added

to the clean speech with 4 signal-to-noise (SNR) levels (15 dB, 10 dB, 5 dB and 0 dB,

respectively). Totally there are 11,571 sentences in the training set. The test dataset

contains 824 sentences from two new speakers (one male and one female). Five types

of noise, which are different from the 10 types in the training set, have been added. The

SNR values for test set are 17.5 dB, 12.5 dB, 7.5 dB and 2.5 dB, respectively. All audio

clips are sampled at 48kHz, with each time point represented as a 24-bit integer.

The second experiment was based on AzBio English sentences that were developed by

Spahr et al. [SDL+12]. The dataset consisted of 33 lists with 20 sentences in each list. The

sentences ranged from 3 to 12 words (median = 7) in length. All speech sentences were

sampled at 22,050 Hz and were spoken by 2 male and 2 female adult speakers [SDL+12].

Two types of masking noise were added to the sentences to achieve the desired SNRs (3

dB and 6 dB): speech-spectrum-shaped noise (SSN) and two talker babble (TTB).

The third experiment was based on RASC863 - annotated 4 regional accent speech

corpus [ras] that were developed by Phonetics Lab, Institute of Linguistics, Chinese

Academy of Social Sciences. This corpus is made of three different types of speech content:

spontaneous speech, read speech, and selected dialectical words. The spontaneous speech

is generated by asking each speaker to give a 4-5 minute spontaneous speech on a topic



27

from our prepared topic sheet or a topic he selected by himself. Besides this topic-oriented

speech, each speaker was also asked to spontaneously answer 15 questions. The read

speech contains 2200 automatically selected phonetically balanced sentences of which 460

were frequently used in daily life. The corpus then prepared frequently used words in daily

life that are different from Standard Chinese for each dialectal region. 15 dialectal words

have been read by each speaker. There are four different regions. The corpus recruited 200

speakers for each region total of 800 speakers. The age, sex, and educational background

of these speakers are balanced. Speech-spectrum-shaped noise (SSN) were added to the

sentences to achieve the desired SNRs (-6 dB, -3 dB, 0 dB, 3 dB and 6 dB).

4.2 Preprocessing

In all experiments, we apply a preprocessing step to downsample all audio clips to

16kHz, and scale their amplitudes to [0,1]. The training set are then split randomly into

training, validation and test sets with the ratio of 8:1:1. Each audio sentence is cut into

multiple clips of 1 second long, which are taken as the inputs to the network. We extract

the clips with a half second overlap as an approach of data augmentation. End-of-sentence

clips, if short than 0.5 second, are discarded and not included as training samples.

4.3 Evaluation metrics

Four evaluation metrics are used in this work. They are signal-to-noise ratio (SNR),

segmental signal-to-noise ratio (SSNR), perceptual evaluation of speech quality (PESQ)

and short-time objective intelligibility measure (STOI). SSNR calculates the average SNRs

of short segments (15 to 20 ms long). PESQ evaluate the speech quality using the

wide-band version recommended in ITU-T P.862.2 [Rec05]. STOI [THHJ10] produces

indicators for the average intelligibility of the degraded speech.
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4.4 Results

Totally four models are evaluated in our experiments with the Noisy VCTK dataset.

They are the baseline model Speech-U-Net, and three dilation models with the ASPP

replacements in the middle of Speech-U-Net (bottom layer), end of the network, and both

locations, respectively. The evaluations were conducted on two test sets: the first one is the

held-out set, which is the 10% of the training set; the other is the official test available in

the dataset.

Table 4.1: Experimental results on Noisy VCTK dataset.

Dataset Model SNR SSNR PESQ STOI

Held-out Test

Input 6.040 -0.092 1.467 0.838

Speech-U-Net 14.504 7.159 1.849 0.857

ASPP-middle 15.042 7.718 1.882 0.859

ASPP-end 14.389 7.181 1.827 0.873

ASPP-middle+end 14.92 7.665 1.788 0.877

Official Test

Input 8.544 1.878 1.982 0.922

Speech-U-Net 17.454 7.955 2.338 0.900

ASPP-middle 18.418 8.862 2.361 0.902

ASPP-end 17.001 8.470 2.262 0.930

ASPP-middle+end 17.529 6.521 2.152 0.928

Official Test SEGAN 7.73 2.16

The results are shown in Table 4.1. It is evident that the baseline Speech-U-Net already

performs rather impressively, achieving an average enhancing performance of 9 dB. Among

the three dilation models, ASPP replacement at the middle (ASPP-middle) produces the

best results, significantly outperforming all other competing solution in SNR and SSNR.

ASPP-end model does not help, performing even worse than the baseline model in SNR

and SSNR. The combination of at-middle and at-end, unsurprisingly, has performance in-

between of the two installations. Comparing the results on the held-out and official test sets,
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the improvements made by ASPP-middle are more significant for the latter (official test set).

Considering that the official test data are acquired from new speakers with different SNRs,

therefore have different data distributions than the training set, the comparison indicates

that the ASPP-middle is more robust and has a better generalization capability than the

baseline model. Such desired properties should be attributed to the enhanced multi-scale

processing brought by the dilation operations. In other words, “listening longer” does make

the network hear better. Fig. 4.1 shows the comparison of ASPP-middle with Speech-U-Net

on a particular audio segment. Ground-truth waveforms are shown in blue, and red lines

are the predictions. For the highlighted audio segment in the waveform pictures, Speech-

U-Net makes rather flat predictions, failing to capture the fluctuations. Our ASPP-middle,

on the other handle, makes accurate predictions for the entire segment.

For PESQ and STOI, none of the three ASPP models produces improvements over

the baseline. This can be in part explained by the choice of the objective function in

our models. The network updates in our models are driven to minimize the L1 difference

between predictions and ground-truth, which is highly related to SNR/SSNR, but does

not directly involve perception and intelligibility components. To replace the L1 distance

with a STOI-based objective [FWT+18b], our models are expected to produce improved

performance measured by PESQ and/or STOI.

It should be noted that our ASPP-middle model also has a higher average SSNR value

than the reported number from SEGAN [PBS17], a state-of-the-art speech enhancement

solution. While we do not intend to make a head-to-head quantitative comparison, as

different experiment setups are used in the studies, the significant improvements in SSNR

can nevertheless be regarded as a side evidence of the effectiveness of our ASPP-middle

model. In addition, our ASPP-middle network, working as a generator, can be connected

with a discriminator to make a full GAN model for further improvements.
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Figure 4.1: Comparison of Speech-U-Net (top row) and ASPP-middle (bottom row) on a
particular audio clip.

Based on the results and observation from the VCTK experiment, we chose ASPP-

middle as our proposed model. We further evaluate its capability using the AzBio

sentence dataset. Speech-U-Net is still taken as the baseline model. The comparisons are

shown in Table 4.2. Similar to the first experiment, ASPP-middle produces larger speech

enhancements than the baseline, measured in SNR and SSNR. In summary, our proposed

ASPP-middle approach consistently improves over the baseline, demonstrating the benefits

of dilation convolutions, as well as the fusion and installation setups we designed.

Table 4.2: Experimental results of Speech-U-Net and ASPP-middle on AzBio dataset.

Model SNR SSNR PESQ STOI

Input 2.697 -4.204 1.062 0.816

Speech-U-Net 9.091 -1.534 1.334 0.834

ASPP-middle 9.348 -1.369 1.315 0.797
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To determine the capability of the ASPP-middle model for the Chinese language, we

evaluate it using the RASC863 dataset. The comparison is shown in Table 4.3. Similar

to the first and second experiments, ASPP-middle produces greater speech enhancement

than the baseline, measured in SNR, PESQ and STOI. In conclusion, our proposed ASPP-

middle method significantly improves the baseline model, showing the benefits of dilated

convolutions as well as our designs.

Table 4.3: Experimental results of Speech-U-Net and ASPP-middle on RASC863 dataset.

Model SNR SSNR PESQ STOI

Input 1.998 -5.121 1.798 0.660

Speech-U-Net 6.165 0.620 2.419 0.776

ASPP-middle 6.540 0.054 2.512 0.787
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5 Conclusions and future works

The performance of Speech-U-Net shows that FCN can be successfully used as a

waveform-based SE architecture. However, Speech-U-Nets still make flat predictions for

some fluctuations in audio clips due to the limited field of view. To address the limitations

of FCN on SE tasks and further improve performance, we propose a module named ASPP,

which relies on dilated convolutional layers to capture longer context and apply it to the

baseline Speech-U-Net .

We train and test the performance of our proposed network on three different datasets

with different languages and different types of noise. We found that the ASPP module

improves FCN’s SE performance on all datasets we examine when fitted to the proper

location of the FCN (i.e., in the middle). It performs particularly well on the Chinese

speech dataset. One possible explanation for this might be that Chinese has embedded

tones. Since pitch differences can lengthen or shorten the speech of the same word, it is

difficult to capture content if the network has only a limited receptive field.

An advantage of the ASPP module is that it does not introduce extra parameters to

the network, as it only modifies the stride of the convolutional scan. This means that

our training can be done in the same time period with the same computing power, which

demonstrates the advantage of our ASPP-middle architecture over FCN. Although larger

neural networks generally lead to better performance, an efficient and fast network is very

beneficial in everyday life, as it can be installed in portable devices such as cell phones and

hearing aids.

Future work may be to explore the application of our model on more datasets as well

as mixed language datasets. Different languages have different characteristics in terms of

phonemes and tones, leading to different generalizations for speech enhancement tasks.

Some languages require connections between longer contexts that even a single ASPP

module might not handle, such as Japanese and French.
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Another future work may be to explore the potential integration of our proposed

module with self-supervised learning (SSL). We hope that the rich speech information

embedded in the speech SSL model can boost our denoising performance to a higher level.
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