Song, S., Qin, X., Brengman, J., Bartone, C., Liu,
J. (2023). Holistic FOD Detection Via Surface Map and
Yolo Networks. 2023 IEEE 33rd International Workshop
on Machine Learning for Signal Processing (MLSP);
1-6.
[[link]]
Song, S., Saunders, K., Yue,
Y., & Liu, J. (2022). Smooth Trajectory Collision
Avoidance through Deep Reinforcement Learning. IEEE
ICMLA'22.
[pdf]
Song et al, Vision-based
Collision Avoidance through Deep Reinforcement
Learning, IEEE NAECON 2021 [pdf]
Neuromorphic Computing
Spiking Neural Nets (sponsored by OHIO and USAF STTR Program)
Yue, Y., Baltes, M.,
Abuhajar, N., ... & Liu, J. (2023). Spiking neural networks
fine-tuning for brain image segmentation. Frontiers in
Neuroscience, 17.
[pdf]
Baltes, M., Abujahar, Yue,
Y., T., Smith, C. D., Liu, J. (2023). Joint ANN-SNN
Co-training for Object Localization and Image
Segmentation. IEEE ICASSP'23
[pdf]
Marc Batles, Hybrid ANN-SNN
Co-Training for Object Localization and Image
Segmentation, M.S. thesis, April
2023. [OhioLINK]
Yue, Y., Baltes, M.,
Abujahar, N., Sun, T., Smith, C. D., Bihl, T., & Liu,
J. (2023). Hybrid Spiking Neural Network Fine-tuning for
Hippocampus Segmentation. IEEE ISBI'23
[pdf]
Colton C. Smith, The
Evaluation of Current Spiking Neural Network
Conversion Methods in Radar Data, M.S. thesis,
Aug. 2021. [OhioLINK]
Machine Learning
Nonlinear Metric Learning (Sponsored by Univ. of Kentucky, NIH)
Shi et. al, Nonlinear feature
transformation and deep fusion for
Alzheimer's Disease staging analysis. Pattern
Recognition, 2017 [link] [pdf]
Shi, B., Liu, J. (2018). Nonlinear Metric
Learning for kNN and SVMs through Geometric
Transformations. Neurocomputing [pdf]
Zhang, P., et al, (2017). Nonlinear Feature
Space Transformation to Improve the
Prediction of MCI to AD Conversion. MICCAI
2017
[pdf ]
Wang, Z., etl al, Nonlinear Metric Learning through Geodesic
Interpolation within Lie Groups, ICPR 2018 [pdf]