Ohio University
Learning & Intelligent Systems Lab
2025
-
Majumder, R., Wang, Z., Yue, Y., Kalita, M., Liu,
J. (2025), Enforcing Graph Structures to Enhance Key
Information Extraction in Document Analysis. 2025
VisAPP Conference.
-
Nagura, D., Bihl, T., Liu, J. (2025), Reinforcement
Learning with Human Experience (RLHE) for Racing Car
Games. 2025 ASEE Conference.
2024
-
Wang, J., Liu, J. (2024) Semi-Supervised Learning
and Focal Masking for Vessel Segmentation in X-ray
Coronary Angiography. IEEE ICMLA'2024.
[link]
[bib]
-
Nagura, D., Bihl, T., Liu, J. (2024) Boosting Race
Car Performance Through Reinforcement Learning from
Ai Feedback (RLAIF).
[link]
[bib]
-
Qin, X., Song, S., Brengman, J., Bartone, C., & Liu,
J. (2024) Robust FOD Detection using Frame
Sequence-based DEtection TRansformer (DETR)
(2024). IEEE Conference on Artificial Intelligence.
[link]
[bib]
- Bahamondes Lorca, V. A.,
Ávalos-Ovando, O., Sikeler, C., Ijäs, H., Santiago,
E. Y., Skelton, E., ... & Govorov,
A. O. (2024). Lateral Flow Assay Biotesting by
Utilizing Plasmonic Nanoparticles Made of Inexpensive
Metals─ Replacing Colloidal Gold. Nano Letters.
[link]
[bib
- Abishek Lakandri, "Exploring
GANs with Conv-TasNet: Adversarial Training for Speech
Separation (2024)", MSCS Thesis
[link]
- Di Caterina, G., Zhang, M., &
Liu, J. (2024). Theoretical advances and practical
applications of spiking neural networks. Frontiers in
Neuroscience, 18, 1406502.
[link]
- Bihl, T., Farr, P., Di
Caterina, G., Vicente-Sola, A., Manna, D., Kirkland,
P., ... & Combs, K. (2024). Exploring spiking neural
networks (SNN) for low Size, Weight, and Power (SWaP)
benefits.
[pdf]
2023
- Yue, Y., Baltes, M.,
Abuhajar, N., ... & Liu, J. (2023). Spiking neural networks
fine-tuning for brain image segmentation. Frontiers in
Neuroscience, 17.
[pdf]
- Song, S., Qin, X., Brengman,
J., Bartone, C., & Liu, J. (2023). Holistic
FOD Detection Via Surface Map and Yolo Networks. In
2023 IEEE 33rd International Workshop on Machine
Learning for Signal Processing (MLSP) (pp. 1-6). IEEE.
[pdf]
[bib]
- Zhang, Y., Liu,
J. (2023). Vertex-based Networks to Accelerate Path
Planning Algorithms. IEEE Interntional Workshop on
Machine Learning for Signal Processing (MLSP'23) (pp. 1-6), IEEE.
[pdf]
- Baltes, M., Abujahar, Yue,
Y., T., Smith, C. D., Liu, J. (2023). Joint ANN-SNN
Co-training for Object Localization and Image
Segmentation. IEEE Interntional Conference on
Acoustics, Speech, and Signal Processing (ICASSP'23)
[pdf]
- Yue, Y., Baltes, M.,
Abujahar, N., Sun, T., Smith, C. D., Bihl, T., & Liu,
J. (2023). Hybrid Spiking Neural Network Fine-tuning for
Hippocampus Segmentation. IEEE International Symposium
on Biomedical Imaging (ISBI'23)
[pdf]
- Marc Batles, Hybrid ANN-SNN
Co-Training for Object Localization and Image
Segmentation, M.S. thesis, April 2023.
[OhioLINK]
2022
- Tao Sun, Time-domain Deep
Neural Networks for Speech Separation, PhD
dissertation, May 2022.
[OhioLINK]
- Song, S., Saunders, K., Yue,
Y., & Liu, J. (2022). Smooth Trajectory Collision
Avoidance through Deep Reinforcement Learning. IEEE
ICMLA'22.
[pdf]
- Sun, T., Abuhajar, N., Gong, S., Wang, Z.,
Smith, C. D., Wang, X., ... & Liu,
J. (2022). Individualized Conditioning and Negative
Distances for Speaker Separation. IEEE ICMLA'22
[pdf]
- Liao, B.,
Chen, Y., Wang, Z., Smith, C. D., & Liu, J. (2022). A
Comparative Study on 1.5 T-3T MRI Conversion through
Deep Neural Network Models. IEEE ICMLA'22
[pdf]
- Shuyu Gong, Listening Longer
to Hear Better: Dilated FCNs for Speech Enhancement,
M.S. Thesis, May
2022. [pdf]
2021
- Colton C. Smith, The
Evaluation of Current Spiking Neural Network
Conversion Methods in Radar Data, M.S. thesis,
Aug. 2021. [OhioLINK]
- Sun et al,, Boosting the
Intelligibility of Speech Enhancement Networks
Through Self-Supervised Representations), IEEE
ICMLA'21,
[[pdf]]
- Abujahar et al, Network
Compression and Frame Stitching for Efficient and
Robust Speech Enhancement, NAECON 2021
[pdf]
- Smith et al, Evaluation of
Spiking Neural Networks in Radar, NAECON 2021 [link]
[pdf]
- Song et al, Vision-based
Collision Avoidance through Deep Reinforcement
Learning, IEEE NAECON 2021
[pdf]
- McGee et al, Network Fusion
for Radar Emitter Detection, NAECON 2021 [link]
[pdf]
2020
- Zhewei Wang, Fully
Convoultional Networks (FCNs) for Medical Image
Segmentation, December, 2020,
[OhioLINK]
- Wang et al, Wang et. al, QuPath Pipeline for
Accurate Cell and Colloid Segmentation, Cytometry A
[link][pdf]
- Yiran Liu, Consistent and
Accurate Face Tracking and Recognition in Videos,
M.S. Thesis, May
2020. [OhioLINK]
2019
- Yani Chen, Deep Learning based
3D Image Segmnetation Methods and Applications,
Ph.D. disseratation, May 2019.
[OhioLINK]
- Gong, S., Wang, Z., Sun, T.,
Zhang, Y., Smith, C., Xu, L., Liu,
J. (2019). Dilated FCN: Listening Longer to Hear
Better. IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA'19)
;[link]
- Wang, Z., Cai, W., Rudmann,
D., Liu, J., Rosol, T. (2019). Automatic
Segmentation of Thyroid Colloid and Follicular Cells
through QuPath Srcripting. STP 38th Annual Symposium
Environmental Toxicologic Pathology and One
Health;[link]
- Wang, Z., Cai, W., Smith,
C., Kantake, N., Rosol, T., Liu, J. (2019). Residual
Pyramid FCN for Robust Follicle Segmentation. 2019
IEEE International Symposium on Biomedical Imaging
(ISBI
2019);[link]
2018
- Shi, B., Liu,
J. (2018). Nonlinear Metric Learning for kNN and
SVMs through Geometric
Transformations. Neurocomputing;[link]
- Wang, Z., Cai, W., Kantake,
N., Liu, J., Rosol, T. (2018). Neural Networks and
Deep Learning to Develop Algorithms for Automated
Image Analysis of Thyroid Hypertrophy. 2018 ACVP
Annual
Meeting;[link]
- Wang, Z., Smith, C., Liu,
J. (2018). Ensemble of Multi-sized FCNs to Improve
White Matter Lesion Segmentation. 2018 International
Conference on Machine Learning in Medical
Imaging;[link]
- Wang, Z., Shi, B., Smith,
C., Liu, J. (2018). Nonlinear Metric Learning
through Geodesic Interpolation within Lie
Groups. International Conference on Pattern
Recognition
(ICPR'2018);[link]
- Chen, Y., Shi, B., Zhang,
P., Smith, C., Liu, J. (2018). Multi-modal Feature
Fusion via Deep Networks for AD/MCI Diagnosis. 2018
IEEE International Symposium on Biomedical Imaging
(ISBI'2018).
- Chen, Y., Wang, Z., Smith,
C., Liu, J. (2018). 3D Brain Tumor Segmentation via
Sequential FCN. 2018 IEEE International Symposium on
Biomedical Imaging (ISBI'2018).
2017
- Zhang, P., Shi, B., Smith,
C., Liu, J. (2017). Learning Feature Transformations
to Improve Semi-Supervised Classification. Pattern
Recognition.
- Shi, B., Chen, Y., Zhang,
P., Smith, C., Liu, J. (2017). Nonlinear feature
transformation and deep fusion for Alzheimer's
Disease staging analysis. Frankfurt, D60486 Germany:
Pattern Recognition; 63: pp. 487-498.
[
link ]
- Chen, Y., Shi, B., Wang, Z.,
Sun, T., Smith, C., Liu, J. (2017). Accurate and
Consistent Hippocampus Segmentation Through
Convolutional LSTM and View Ensemble. Machine
Learning on Medical
Imaging;[link]
- Zhang, P., Shi, B., Smith,
C., Liu, J. (2017). Nonlinear Feature Space
Transformation to Improve the Prediction of MCI to
AD Conversion. Medical Image Computing and Computer
Assisted Interventions Conference (MICCAI'
2017);[link]
- Chen, Y., Shi, B., Zhang,
P., Smith, C., Wang, Z., Liu, J. (2017). Hippocampus
Segmentation through Multi-view Ensemble
ConvNets. 2017 IEEE International Symposium on
Biomedical Imaging (ISBI
2017);[link]
2016
- Hobbs, K., Zhang, P., Shi,
B., Smith, C., Liu, J. (2016). Quad-mesh Coordinate
Modeling and its applications in
Neuroimages. computerized graphics medical
imaging.
- Zhang, P., Shi, B., Smith,
C., Liu, J. (2016). Nonlinear Metric Learning for
Semi-Supervised Learning via Coherent Point Drifting
. IEEE International Conference on Machine Learning
and Applications
(ICMLA'2016);[link]
- Zhang,
P., Shi, B., Smith, C., Liu, J. (2017). Nonlinear
Feature Space Transformation to Improve the
Prediction of MCI to AD Conversion. Medical Image
Computing and Computer Assisted Interventions
Conference (MICCAI'
2017);[link]
- Hobbs, K., Zhang, P., Shi,
B., Smith, C., Liu, J. (2016). Quad-mesh Based
Radial Distance Biomarkers for Alzheimer's
Disease,. 2016 IEEE 13th International Symposium on
Biomedical Imaging (ISBI'2016);
19-23.[link]
2015
- Liu, J., Ramakrishnan, S.,
Khuder, S., Kaw, M., Muturi, H., Lester, S., Lee,
S., Fedorova, L., Kim, A., Mohamed, I., Gatto-Weis,
C., Eisenmann, K., Conran, P., Najjar,
S. (2015). High-calorie diet exacerbates prostate
neoplasia in mice with haploinsufficiency of Pten
tumor suppressor gene.. 3. Molecular metabolism; 4:
186-98.
- Chen, Y., Shi, B., Smith,
C., Liu, J. (2015). Nonlinear Feature Transformation
and Deep Fusion for Alzheimer’s Disease Staging
Analysis. LNCS . Switzerland: Machine Learning in
Medical Imaging (MLMI'2015); 9352:
pp. 304-312.[link]
- Zhang,
P., Shi, B., Smith, C., Liu, J. (2017). Nonlinear
Feature Space Transformation to Improve the
Prediction of MCI to AD Conversion. Medical Image
Computing and Computer Assisted Interventions
Conference (MICCAI'
2017);[link]
- Shi, B., Chen, Y., Hobbs,
K., Smith, C., Liu, J. (2015). Nonlinear Metric
Learning for Alzheimer's Disease Diagnosis with
Integration of Longitudinal Neuroimaging
Features. 1-901725-53-7. British Machine Vision
Conference
(BMVC'2015);[link]
2014
- Arum, O., Boparai, R.,
Saleh, J., Wang, F., Dirks, A., Turner, J.,
Kopchick, J., Liu, J., Khardori, R., Bartke,
A. (2014). Specific suppression of insulin
sensitivity in growth hormone receptor
gene-disrupted (GHR-KO) mice attenuates phenotypic
features of slow aging.. 6. Aging cell; 13:
981-1000.
- Shi, B., Wang, Z., Liu,
J. (2014). Distance-informed metric learning for
Alzheimer’s Disease Staging. 2014 Annual
International Conference of the IEEE Engineering in
Medicine and Biology Society
(EMBC'2014);[link]
- Zhang,
P., Shi, B., Smith, C., Liu, J. (2017). Nonlinear
Feature Space Transformation to Improve the
Prediction of MCI to AD Conversion. Medical Image
Computing and Computer Assisted Interventions
Conference (MICCAI'
2017);[link]
- Hobbs, K., Zhang, P., Liu,
J. (2014). Inherent Radial Distances for Robust
Hippocampal Atrophy Estimation in Alzheimer’s
Disease. 2014 Annual International Conference of the
IEEE Engineering in Medicine and Biology Society
(EMBC'2014).
2013 and prior
- Xu, H., Liu,
J. (2013). Spatial-awareness Spectral Embedding
(SASE) for Robust Shape Matching. International
Conference on Acoustics, Speech, and Signal
Processing (ICASSP'2013)
;[link]
- Shi, B., Liu, J., Berryman,
D., List, E., Kelder, B., Kopchick,
J. (2013). Development of a whole-body-mouse
statistical shape atlas for obesity research. 2013
BMES Annual Meeting.
- Xu, H., Zhang, P., Liu,
J. (2013). Towards the Identification of Shape
Biomarker(s) for Alzheimer's Disease (AD) based on a
Spectral Shape Analysis Framework. 2013 BMES Annual
Meeting;[link]
- Shi, B., Liu, J., Xie, S.,
Berryman, D., List, E. (2013). Robust Separation of
Visceral and Subcutaneous Adipose Tissues in
Micro-CT of Mice. The 35th Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society
(EMBC'2013);[link]
- Colvin, R., Liu,
J. (2012). Proceedings from the Great Lakes
Bioinformatics Conference 2011. Preface. BMC
Bioinformatics; 13 Suppl 2: I1.
- Liu, J., Colvin,
R. (2012). Preface. S-2. BMC Bioinformatics; 13:
I1. [link]
- Xie, S., Liu, J., Smith,
C. (2012). Riemannian Shape Analysis Based on
Meridian Curves. 1. IEEE 11th International
Conference on Machine Learning and Applications
(ICMLA'2012); 1:
532-537.[link]
- Xie, S., Liu, J., Smith,
C. (2012). Curve Skeleton-based Shape Representation
and Classification. International Conference on
Image Processing (ICIP)
2012;[link]
- Xu, H., Liu, J., Smith,
C. (2012). Robust and efficient point registration
based on clusters and Generalized Radial Basis
Functions (C-GRBF). international conference on
image processing
(ICIP'2012);[link]
- Zhang, W., Liu, J., Liu,
Z. (2012). Adaptive re-transmission scheme for
wireless mobile networking and computing. 2012
International Conference on Systems and Informatics
(ICSAI'2012); 56 - 62
.[link]
- Zhang, W., Liu, J., Liu,
Z. (2012). Adaptive re-transmission scheme for
wireless mobile networking and computing.. Qingdao:
Systems and Informatics (ICSAI), 2012 International
Conference
on;[link]
- Xie, S., Liu, J., Smith,
C. (2012). A New Shape Analysis Framework based on
Curve Skeletons. 2012 IEEE International Conference
on Acoustics, Speech and Signal Processing
(ICASSP'2012);
701-704.[link]
- Shi, B., Liu,
J. (2012). Regularity-guaranteed transformation
estimation in medical image registration. Proc. SPIE
8314, Medical Imaging 2012: Image Processing,
83141W;
8314:[link]
- Shi, B., Liu,
J. (2011). Non-Twist Regularization for Deformation
Estimation. London: Medical Image Analysis and
Understanding (MIAU'2011);
151-156.[link]
- Mourning, C., Nykl, S., Xu,
H., Chelberg, D., Liu, J. (2010). GPU acceleration
of robust point matching. 417--426.
- Nykl, S., Mourning, C., xu,
H., Chelberg, D., Liu, J. (2010). Lecture Notes in
Computer Science 6455, Advances in Visual Computing,
Chapter Title: GPU Acceleration of Robust Point
Matching. Advances in Visual Computing. Berlin
Heidelberg: Springer-Verlag; 6455:
417-426.[link]
- Liu, J., Smith, C.,
Chebrolu, H. (2009). Automatic Multiple Sclerosis
detection based on integrated square
estimation. Computer Vision and Pattern Recognition
Workshops (CVPRW
2009);[link]
- Liu, J., Chelberg, D.,
Smith, C., Chebrolu, H. (2009). A Local
Likelihood-based Level Set Segmentation Method for
Brain MR Images. F09. International Journal of
Tomography and Statistics;
12:[link]
- Smith, C., Chebrolu, H.,
Markesbery, W., Liu, J. (2008). Improved predictive
model for pre-symptomatic mild cognitive impairment
and Alzheimer's disease. 10. Neurological Research;
30:
1091-1096.[link]
- Liu, J., wang,
y. (2008). Segmentation-Assisted Image Registration
for Brain Morphological Analysis. 5. International
Journal of Computational Science; 2: 690-707.
- Xie, S., Liu, J., Berryman,
D., List, E., Smith, C., Chebrolu, H. (2007). A
Robust Image Segmentation Model Based on Integrated
Square Estimation. International Symposium on Visual
Computing
(ISVC'2007);[link]
- Liu, J., Smith, C.,
Chebrolu, H. (2007). Automatic subcortical structure
segmentation using probabilistic
atlas. International Symposium on Visual Computing
(ISVC'2007);[link]
- Liu, J., Smith, C.,
Chebrolu, H. (2007). Automatic Subcortical Structure
Segmentation using Local Likelihood-based Active
Contour. 3D Segmentation in The Clinic: A Grand
Challenge 2007;
pp. 91-98.[link]
- Liu, J., Chelberg, D.,
Chebrolu, H., Smith, C. (2007). Distribution-based
Level Set Segmentation for Brain MR
Images. Proceedings of the British Machine Vision
Conference;[link]
- Liu, J. (2007). A Local
Probabilistic Prior-Based Active Contour Model for
Brain MR Image Segmentation. Asian Conference on
Computer Vision (ACCV'2007); pp
956-964.[link]
- Liu, J., Wang, Y., Liu,
J. (2006). A Unified Framework for
Segmentation-Assisted Image Registration. Asian
Conference on Computer Vision (ACCV 2006); pp
405-414.[link]
- Liu, J. (2006). Robust Image
Segmentation using Local Median. Computer and Robot
Vision, 2006. The 3rd Canadian Conference
on;[link]
- Li, C., Liu, J., Fox,
M. (2005). Segmentation of External Force Field for
Automatic Initialization and Splitting of
Snakes. 11. Pattern Recognition; 38:
1947-1960.[link]
- Cao, L., Harrington, P.,
Liu, J. (2005). SIMPLISMA and ALS Applied to
Two-dimensional Nonlinear Wavelet Compressed Ion
Mobility Spectra of Chemical Warfare Agent
Simulants. 8. Analytic Chemistry; 77:
2575-2586.[link]
- Li, C., Liu, J., Fox,
M. (2005). Segmentation of edge preserving gradient
vector flow: an approach toward automatically
initializing and splitting of snakes. Computer
Vision and Pattern Recognition
(CVPR'2005);[link]
- Liu, J. (2005). Segmentation
guided registration for medical images. SPIE Medical
Imaging;[link]
- Wang, Y., Liu,
J. (2005). Segmentation Guided Robust Multimodal
Image Registration Using Local Correlation. Annual
International Conference of the IEEE ESBS
(ESBC'05);[link]
- Liu,
J. (2005). Vector-Valued Local Frequency
Representation for Robust Multimodal Image
Registration. Annual International Conference of the
IEEE ESBS
(ESBC'05);[link]
- Liu, J., Wei, M., Liu,
J. (2004). Artifact reduction in
mutual-information-based CT-MR image
registration. Proceedings of SPIE Medical Imaging;
[link]
- Liu, J. (2005). Segmentation
guided registration for medical images. SPIE Medical
Imaging;[link]
- Liu, J., Wei, M., Liu,
J. (2004). Artifact reduction in
mutual-information-based CT-MR image
registration. Proceedings of SPIE Medical Imaging;
[link]
- Yang, L., Welch, L., Liu,
J., Cavanaugh, C. (2003). A Robust QoS Forecasting
Technique For Dynamic Distributed Real-Time
Testbed. New Orleans, LA: IEEE CAMP 2003
International Workshop on Computer Architectures for
Machine Perception.
- Liu, J., Liu,
J. (2003). Artifacts reduction in mutual
information-based image registration using prior
information. international conference on image
processing
2003;[link]
- Yang, L., Liu, J.,
Cavanaugh, C., Welch, L. (2003). A L2E-Based QoS
Forecasting Algorithm for a Dynamic, Distributed
Real-Time Systems. Las Vegas, NV: The 2003
International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA'03);
424-429.
- Liu, J., Vemuri, B., Bova,
F. (2002). Efficient Multimodal Image Registration
using Local Frequency Maps. 3. Secaucus, NJ: Machine
Vision and Application/Springer-Verlag New York
Inc.; 13:
149-163.[link]
- Liu, J., Vemuri, B.,
Marroquin, J. (2002). Local Frequency Representation
for Robust Multi-modal Image Registration. 5. IEEE
Transactions on Medical Imaging; 21:
462-469.[link]
- Liu, J., Vemuri,
B. (2001). Fast Non-rigid Multimodal Image
Registration Using Local Frequency
Maps. 1-901725-53-7. Medical Image Computing and
Computer Assisted Interventions Conference
(MICCAI'2001).
- Liu, J. (2001). Regularized
Quadrature Filters for Local Frequency Estimation:
Application to Multimodal Volume Image
Registration. Vision Modeling and Visualization
Conference 2001
(VMV-01);[link]
- Liu, J., Vemuri, B.,
Marroquin, J. (2001). Robust Multimodal Image
Registration Using Local Frequency
Representations. 1-901725-53-7. Information
Processing in Medical Imaging
(IPMI'01);[link]
- Liu, J., Vemuri, B., Bova,
F. (2000). Multimodal image registration using local
frequency. 1-901725-53-7. Workshop of Computer
Vision and Applications
(WACV'00) [link]
Zhu, J., Wilhelm, J., Williams II,
R., Uijt de Haag, M., Bartone, C., Liu, J., Chelberg, D.,
Liu, C., DiBenedetto, M. An Integrated, Scalable
All-Weather, All-Terrain, All-Time, Autonomous Perimeter
Monitoring and Ground Inspection System, Provisional
patent application. OU16018.
Liu,
J. (2011). Segmentation-Assisted Registration for Brain MR
Images. Springer Science
;[link]
Liu, J. (2008). A Unified
Framework for Segmentation-assisted Image
Registration. 14. Recent Advances in Computational
Sciences, Jorgensen/ Shen/Shu/Yan eds. / World Scientific;
1: 243-254.
Liu, J., Wang, Y. (2008). A
Unified Framework for Segmentation-assisted Image
Registration,. World Scientific; 243-254.
Liu, J. (2007). Deformable Model-based Image Registration. Springer; 1: 517-542.
Liu, J. (2007). 15. Deformable
Models: Biomedical and Clinical Applications, Suri/Farag,
eds.,; 1: 517-542.